
GlusterFS Translators
Conceptual Overview

Jeff Darcy
August 28, 2012

We Should Have Called It DIYFS

● GlusterFS is a not a file system

● It's a way to build new file systems

● We happen to have built a fairly nice one
● distribution, replication, NFS/Swift/Hadoop, . . .
● come see that presentation tomorrow

● Don't like it? Build your own!

Translating “translator”

● A translator converts requests from users into requests
for storage

● one to one, one to many, one to zero (e.g. caching)
● A translator can modify requests on the way through

● convert one request type into another
● modify paths, flags, even data (e.g. encryption)

● ...intercept or block them (e.g. access control)

● ...or spawn new requests (e.g. pre-fetch)

Example: Request Routing in DHT

User (via FUSE)

DHT

Brick 1 Brick 2

Request goes
this way (not used)

Example: Request Fan Out in AFR

User (via FUSE)

AFR

Brick 1 Brick 2

lock+setxattr
write

setxattr+unlock

lock+setxattr
write

setxattr+unlock

user write

Example: Read Ahead

User (via FUSE)

read-ahead

Brick 1

Prefetch read
(async)

Original
read

First
user read

User (via FUSE)

read-ahead

Brick 1

Second
user read

(not used)

Reply
from cache

Why Build Your Own?

● GlusterFS represents a particular set of design choices
● e.g. data safety is first priority
● . . . then consistency is second . . .
● . . . finally performance

● Those choices aren't right for everyone

● Tuning only gets you so far

● We can never cover all of the use cases
● this is where HekaFS came from

Tradeoff Example: Slow Replication

● Principle: data safety before performance

● We do extra operations to make sure data survives a
crash

● That means more network round trips

● Optimizations work well for buffered sequential writes
● not so much for small/random/synchronous writes

● Lesson: AFR (today) might not be right for some
workloads (e.g. virtual-machine images)

● . . . so I wrote bypass, hsrepl

Tradeoff Example: Slow Directory Listings

● Principle: consistency before performance

● We assume other clients might have added, changed,
or deleted files

● We do a new lookup/stat/getxattr each time

● This especially hurts us e.g. with PHP scripts, git
service

● Lesson: tune cache/prefetch translators, use
autoloaders/APC

● . . . or try xattr-prefetch, negative-lookup

Benefit of DIY

● Let's see how negative-lookup helps “PHP” workload
● 1000 files spread across 10 directories
● power-law distribution: 80% of hits to 10% of files

● Measure time to find each file

[root@gfs-i8c-04 phpsim]# ./worker.py
average latency = 0.690ms

[root@gfs-i8c-04 phpsim]# ./worker.py
average latency = 2.478ms

GlusterFS 3.3

negative-lookup
over 3x as fast

How Do Translators Work?

● Shared objects

● Dynamically loaded according to “volfile”
● dlopen/dlsym
● set up pointers to parents/children
● call init (constructor)
● call I/O functions through fops

● Conventions for validating/passing options etc.

● “Translator 101” series at hekafs.org

Asynchronous Programming Model

1267 STACK_WIND (frame, dht_unlink_cbk,
1268 cached_subvol, cached_subvol->fops->unlink,
1269 &local->loc);
1270
1271 return 0;

callback function

next translator specific function

DANGER ZONE

Danger Zone?

● You lost control when you called STACK_WIND
● callback might have already happened reentrantly
● . . . or it might be running on another thread right now
● . . . or it might not run for a long time

● Data might be modified, freed, still in use

● Be extremely careful doing anything but return after
STACK_WIND

● (please clean up local allocations/references though)

Saving Context

● Pass translator-specific information between original
function and call back

● Framework provides frame->local for exactly this
● pointer to whatever structure you want
● local to call, not translator (that's this->private)
● you allocate from mem_pool, we free when call is done

● Gotcha: frame will be shared between STACK_WIND
callbacks

Fan Out

 406 xlator_list_t *trav = NULL;
 …
 419 trav = this->children;
 ...
 440 local->call_count = priv->child_count;
 441 while (trav) {
 442 STACK_WIND (frame, stripe_lookup_cbk, trav->xlator,
 443 trav->xlator->fops->lookup,
 444 loc, xattr_req);
 445 trav = trav->next;
 446 }

local is shared

child-iteration idiom

Fan In

 314 LOCK (&frame->lock);
 315 {
 316 callcnt = --local->call_count;
 …
 374 }
 375 UNLOCK (&frame->lock);
 376
 377 if (!callcnt) {

lock shared structure

how we know
we're done

Deferring Calls

2175 stub = fop_writev_stub (frame, NULL, fd, vector, count, offset, flags,
2176 iobref, xdata);
....
1843 call_resume (stub);

● There's an fop_xxx_stub for each operation type
● . . . and for each callback too

● You can also call_stub_destroy instead of resuming

capture arguments
in a structure

from callback
or worker thread

Initiating New Calls

 477 newframe = create_frame(this,&priv->pool);
 ...
 487 STACK_WIND_COOKIE (newframe, hsrepl_np_cbk, child1,
 488 child1, child1->fops->setxattr,
 489 &tmploc, dict, 0, NULL);
 ...
 120 STACK_DESTROY(frame->root);

actually creates
a whole stack

sometimes
copy_frame

in callback
instead of STACK_UNWIND

Persistent objects

● Inode (inode_t) represents a file on disk

● File descriptor (fd_t) represents an open file

● Reference counted - inode_ref, fd_unref

● Translators can add own context
● e.g. inode_ctx_put (inode, xlator, value)
● values are 64-bit unsigned (or pointers)
● adding context causes translator's forget/release to be

called when object is deleted

Utility Functions

● Dictionaries

● Memory management with accounting: GF_MALLOC,
GF_CALLOC, GF_FREE

● Logging: gf_log, gf_print_trace

● UUIDs, hashes, red/black trees, name resolution

● all sorts of other stuff

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

