GlusterFS Translators

Conceptual Overview

Jeff Darcy
August 28, 2012



We Should Have Called It DIYFS

GlusterFS is a not a file system
It's a way to build new file systems

We happen to have bullt a fairly nice one

distribution, replication, NFS/Swift/Hadoop, . . .
come see that presentation tomorrow

Don't like it? Build your own!



Translating “translator”

A translator converts requests from users into requests
for storage

one to one, one to many, one to zero (e.g. caching)
A translator can modify requests on the way through

convert one request type into another
modify paths, flags, even data (e.g. encryption)
...Intercept or block them (e.g. access control)

...0r spawn new requests (e.g. pre-fetch)



Example: Request Routing in DHT

User (via FUSE)

Request goes l
this way DHT (not used)

|

Brick 1 Brick 2




Example: Request Fan Out in AFR

User (via FUSE)

user write ‘ l

lock+setxattr
AFR write

setxattr+unlock

l lock+setxattr l

Brick 1 write Brick 2
setxattr+unlock




Example: Read Ahead Reply

from cache

User (via FUSE) %—
First Prefetch read
user read (async)
Second
Y N user read

read-ahead

Original
read
\J
Brick 1 %7

User (via FUSE)

Y

read-ahead %

I

I

(not used) F |
\ J

Brick 1




Why Build Your Own?

GlusterFS represents a particular set of design choices

e.g. data safety is first priority
.. . then consistency is second . . .
... finally performance

Those choices aren't right for everyone

Tuning only gets you so far

We can never cover all of the use cases
this is where HekaFS came from



Tradeoff Example: Slow Replication

Principle: data safety before performance

We do extra operations to make sure data survives a
crash

That means more network round trips
Optimizations work well for buffered sequential writes

not so much for small/random/synchronous writes

Lesson: AFR (today) might not be right for some
workloads (e.g. virtual-machine images)

... S0 | wrote bypass, hsrepl



Tradeoff Example: Slow Directory Listings

Principle: consistency before performance

We assume other clients might have added, changed,
or deleted files

We do a new lookup/stat/getxattr each time

This especially hurts us e.g. with PHP scripts, git
service

Lesson: tune cache/prefetch translators, use
autoloaders/APC

... or try xattr-prefetch, negative-lookup



Benefit of DIY

Let's see how negative-lookup helps “PHP” workload

1000 files spread across 10 directories
power-law distribution: 80% of hits to 10% of files

Measure time to find each file

[root@gfs-18c-04 phpsim]# ./worker.py GlusterFS 3.3

average latency = 2.478ms

[root@gfs-18c-04 phpsim]# ./worker.p _

average latency = 0.690ms negative-lookup
over 3x as fast




How Do Translators Work?

Shared objects

Dynamically loaded according to “volfile”

dlopen/disym

set up pointers to parents/children
call init (constructor)

call I/O functions through fops

Conventions for validating/passing options etc.
“Translator 101" series at hekafs.org



Asynchronous Programming Model

DANGER ZONE callback function
1267 STACK_WIND (frame, dht_unlink_cbk,
1268 cached_subvol, cached_subvol->fops->unlink,
1269 &local->loc);
1270
1271 return 0;

next translator specific function




Danger Zone?

You lost control when you called STACK_WIND

callback might have already happened reentrantly
... Or it might be running on another thread right now

... or it might not run for a long time
Data might be modified, freed, still in use

Be extremely careful doing anything but return after
STACK _WIND

(please clean up local allocations/references though)



Saving Context

Pass translator-specific information between original
function and call back

Framework provides frame->local for exactly this

pointer to whatever structure you want
local to call, not translator (that's this->private)
you allocate from mem_pool, we free when call is done

Gotcha: frame will be shared between STACK_WIND
callbacks



Fan Out

local is shared

406 xlator_list t *trav = NULL:

419 trav = this->childr

440 local->call_count = priv->child_count;

441 while (trav) {

442 STACK_WIND (frame, stripe_lookup_cbk, trav->xlator,
443 trav->xlator->fops->1lookup,

444 loc, xattr_req);

445 trav = trav->next;

446 }

child-iteration idiom




Fan In

lock shared structure

314 LOCK (&frame->lock);

315 {

316 callcnt = --local->call_count;
374 }

375 UNLOCK (&frame->lock);

376

377 if (!callcnt) {

how we know
we're done




Deferring Calls

capture arguments
in a structure

2175 stub = fop_writev_stub (frame, NULL, fd, vector, count, offset, flags,
2176 iobref, xdata);

1843 call resume (stub);

from callback
or worker thread

There's an fop_xxx_stub for each operation type
... and for each callback too
You can also call_stub_destroy instead of resuming



Initiating New Calls

actually creates sometimes
a whole stack copy_frame

477 newframe = create_frame(this, &priv->pool);
487 STACK_WIND_COOKIE (newframe, hsrepl_np_cbk, childil,
488 childl, childi->fops->setxattr,
489 &tmploc, dict, O, NULL);

120 STACK_DESTROY(frame->root);

In callback
instead of STACK_UNWIND




Persistent objects

node (/node_t) represents a file on disk
~1le descriptor (fd_t) represents an open file

Reference counted - inode ref, fd _unref

Translators can add own context
e.g. inode ctx_put (inode, xlator, value)
values are 64-bit unsigned (or pointers)

adding context causes translator's forget/release to be
called when object is deleted



Utility Functions

Dictionaries

Memory management with accounting: GF_ MALLOC,
GF_CALLOC, GF_FREE

Logging: gf log, gf print_trace
UUIDs, hashes, red/black trees, name resolution

all sorts of other stuff



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

