
Disperse Translator

Ramon Selga

rselga@datalab.es

Xavier Hernandez

xhernandez@datalab.es

Barcelona, November 8, 2012

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Introduction

Main idea:

 Striped volumes offer a lot of space but do not

support faulting bricks

 Replicated volumes allow a configurable degree

of fault tolerance but eat a lot of space

 We want to build a volume that has a configurable

degree of redundancy with a small space waste

 Solution: Disperse the data and add redundancy

Disperse Translator

Introduction

• Currently available volume types

 Striped

 Distributed

 Replicated

 Distributed+Replicated

 Striped+Replicated

 Distributed+Striped

 Distributed+Striped+Replicated

Disperse Translator

Introduction

• New volume types for Gluster

 Dispersed

 Based on erasure codes

 Configurable level of redundancy

 Better utilization of physical storage space

 Optimized bandwidth usage

 Limited I/O performance

 Small performance loss when degraded

 Distributed+Dispersed

 Improved I/O performance

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Features

• Configurable level of fault tolerance

 Volumes can have any number of bricks (B)

 A level of redundancy (R) must be defined

 Minimum allowed value is 1

At most 1 brick can fail at the same time without loss of service

nor data.

For a 0 redundancy, you can use stripe or distribute.

 Maximum allowed value is 𝐵−1

2

Almost half of the bricks can fail at the same time without loss

of service nor data.

To tolerate the failure of half of the bricks, you can use

replicate.

 The effective space is reduced (B-R)

 Redundancy is distributed evenly amongst bricks

 Tradeoff between reliability and available space

Disperse Translator

Features

• Minimize storage space waste

 Each file is divided into chunks of size S

 Each chunk is split into fragments

 Additional redundancy fragments are generated

 Each fragment is stored on one brick

 The proportion of wasted space is 𝑅

𝐵

 You can make this value as small as desired

Example:

6 bricks (B=6) of 1 TB and redundancy 2 (R=2)

Total space: 6 TB

Wasted space: 2 TB (33%)

Effective space: 4 TB (67%)

Disperse Translator

Features

• Reduced bandwidth usage

 Reads

 Always read B - R fragments of size 𝑆

𝐵−𝑅

 No overhead.

 Writes

 B – F fragments of size 𝑆

𝐵−𝑅
 must be updated

 If not a full chunk write, a read must be made (S bytes)

 Always strictly less than 3S

 On average it’s commonly near 2S (or lower if read not needed)

Example:

6 bricks of 1 TB with redundancy 2. Read/Write size 4KB (S=4096)

Read overhead: 0 bytes (*)

Write overhead: 2048 bytes (6144 bytes if read needed)

Disperse Translator

Features

• Limited IOPS

 Each brick stores a fragment of each chunk

 Reads

 R bricks do not need to be accessed

 Some reads can be served in parallel

 Writes

 All alive bricks are accessed

 No parallelism is possible

 Degradation does not have a great impact

 Distribute translator can improve that

Disperse Translator

Features

• Lock-Free Self-Healing
 Based on a new healing translator running on each server

 Managed only by one client per file basis

 Data healing is handled without any lock held

 Metadata requests are refused on the brick being healed

 Read requests are only served if belong to an already healed area

 Write requests are always handled and have priority over healing

 The healing client is allowed to read/modify data or metadata

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

How it works

• Based on erasure codes

 Fast implementation of the Rabin IDA (Information

Dispersal Algorithm)

 R additional fragments are computed from a set of

B – R data fragments

 Any data fragment can be recovered from any

subset of B – R fragments (data or redundancy)

Disperse Translator

How it works

• Each request is mapped to the involved

chunks of the file

 The chunk size can be customized

 The selected value may affect performance

 It depends on access patterns and file sizes

• For read requests, B-R fragments of each

chunk are read from B-R bricks

• For write requests, incomplete chunks are

read and then updated

• If one or more bricks are down, their

fragments are recovered using IDA

Disperse Translator

How it works

• Read operation

Disperse Translator

How it works

• Read operation

 When possible, all fragments are read from

data fragments, not redundancy, to avoid using

IDA

 Redundancy is spread over the bricks in a way

that, in average, it distributes the load

Disperse Translator

How it works

• Write operation

Disperse Translator

How it works

• Self-Healing

 Clients detect inconsistencies using metadata

 Then initiate a healing session using the healing

translator (only one is allowed to heal a single file)

 Initially entrylk() and inodelk() are held

 Healing client handshake

 Healing preparation

 Metadata healing

 No lock is held during data healing

 Finally inodelk() is held

 Final synchronization of metadata (xattr)

 Gracefully finalize the healing process

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Architecture

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Reliability of metadata

• All metadata is replicated over all bricks

 This makes metadata highly reliable

 Metadata is used to detect inconsistencies

• A minimum quorum of matching metadata

is needed

 The data of a file is only considered valid if

metadata of at least B – R bricks matches

 Split-Brain is not possible

 It will never have two valid versions of the same

data

• Special files are handled as metadata

Disperse Translator

Reliability of data

• Many concepts are similar to RAID5/6

• User selectable level of reliability

(configuring R at creation time)

 Up to R bricks (any subset of B) may fail

without service interruption or data loss

• Redundancy is spread uniformly over the

bricks

• A fast implementationof Rabin IDA is used

when a volume is degraded

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Examples

• Scenario:

 6 servers with 4 SATA disks 4TB each and

capable of 90 IOPS

 Each disk is configured as one brick

• Alternatives considered:

 Striped volume

 Distributed + Replica 2 volume

 Distributed + Replica 3 volume

 Distributed + Disperse 6.2 (B=6, R=2) volume

Disperse Translator

Examples

• Striped volume

 Effective capacity: 96 TB

 Read IOPS: 2160

 Write IOPS: 2160

 Read bandwidth ratio: 1

 Write bandwidth ratio: 1

 Maximum failed bricks: 0

 Maximum failed servers: 0

Disperse Translator

Examples

• Distribued + Replica 2 volume

 Effective capacity: 48 TB

 Read IOPS: 2160

 Write IOPS: 1080

 Read bandwidth ratio: 1

 Write bandwidth ratio: 2

 Maximum failed bricks: 1

 Maximum failed servers: 1

Disperse Translator

Examples

• Distribued + Replica 3 volume

 Effective capacity: 32 TB

 Read IOPS: 2160

 Write IOPS: 720

 Read bandwidth ratio: 1

 Write bandwidth ratio: 3

 Maximum failed bricks: 2

 Maximum failed servers: 2

Disperse Translator

Examples

• Distribued + Disperse 6.2 volume

 Effective capacity: 64 TB

 Read IOPS: 540

 Write IOPS: 360

 Read bandwidth ratio: 1

 Write bandwidth ratio: 1..2

 Maximum failed bricks: 2

 Maximum failed servers: 2

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Current state

• Disperse translator

 It’s implemented and operational with all features

enabled

 No optimizations applied yet

• Heal helper translator

 It’s implemented and operational with a minimal set

of features to allow lock-free healing

 More features can be added to improve healing

capabilities

• An alpha version is being tested in our labs

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Future

• Add cli support for managing the new kind

of volume

• Analyze the possibility and advantages of

using a RAID5-like striping

 Worse network performance

 Better IOPS

• Analyze the possibility of allowing per file

chunk size definition (using xattrs)

Disperse Translator

That’s it

Thank you very much

Disperse Translator

About us

• Who we are

 Company in the IT services sector

 32 years of experience

 Expertise in a wide range of fields

 Aware of the latest technology trends

 Partner of the leading technology companies

 We support Open Source

 Involved in some european funded projects

Disperse Translator

About us

• What we do

 Provide support in decision making to our

customers in a wide range of areas

 Smoothly integrate different technologies to

achieve the best solution for a given problem

 Develop custom applications for client/server,

web or mobile environments

 Install network and system components

 Virtualization

Disperse Translator

About us

• Our customers

 Mid-sized companies

 Some in the public sector

 Healthcare area

 Research departments

• Our customers needs (some of them)

 Need large amounts of storage space

